7. Обыкновенная задача про строки

Не решаласьСложная

Назовем две строки ss и tt эквивалентными, если для любой строки uu длины 2, количество вхождений uu в ss совпадает с количеством вхождением uu в tt. Таким образом, строки «aaaba», «abaaa» и «baaab» попарно эквивалентны между собой (строка «aa» входит два раза, строка «ab» один раз, строка «ba» один раз, строка «bb» не входит как подстрока), строки «abb» и «bba» — нет.

В этой задаче вам будут даны QQ строк, состоящих из символов «a», «b» и «c», для каждой из которых надо будет посчитать количество эквивалентных им непустых строк, также состоящих из символов «a», «b» и «c». Так как это количество может быть очень большим, то надо вывести его остаток при делении на 109+710^9+7.

Формат ввода

В первой строке входных данных дано число GG - номер подзадачи, к которой относится текущий тест. Для теста из примера G=0G = 0.

На второй строке дано число qq (1q1051 \leq q \leq 10^5), затем следуют qq строк, состоящих из символов «a», «b» и «c». Суммарная длина строк не превышает 10610^6.

Формат вывода

Требуется вывести qq целых чисел - для каждой строки необходимо вывести количество эквивалентных ей по модулю 109+710^9+7.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены. За nin_i обозначена длина ii-й строки во входных данных, за LL обозначена сумма длин строк, за ww - максимальный ответ (не взятый по модулю) среди всех запросов.

Условие

Примечание

Пояснение к примеру:

  • Строке «abaa» эквивалентны строки «abaa», «aaba», «baab»;
  • Строке «abca» эквивалентны строки «abca», «bcab», «cabc»;
  • Строке «ccbca» эквивалентны строки «ccbca» и «cbcca»;
  • Строке «bacc» эквивалентна только строка «bacc».

Ограничения

Ограничение времени

2 с

Ограничение памяти

512 МБ

Пример 1

Ввод
0
4
abaa
abca
ccbca
bacc
Вывод
3
3
2
1

Теги

Нужно войти, чтобы отправить решение.Войти